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A Higgs field is a square matrix that has power series as its
elements.

We can define a Higgs field as an element of ¢ € Mat,,x, ([[z]]).

(Here C[[x]] = {ao + a1z + asx® +...:a; € C,i > O} is a ring,
called the ring of the power series in one variable with complex
coefficients.)



Let R be a ring. An ideal of R is a subset I C R such that
» for all f,g € I, we have f+g¢g €1,
» forall fel, ge R, we have fg € I.

Note that every ideal of R is a subring of R, but not vice versa.



Factor rings

Definition 3
Let R be a ring, and I be an ¢deal in R. Then we can define the

factor ring R/I whose elements are equivalence classes for the
equivalence relation:
rT~Yy & x—yeEl.

For x € R, we denote by x + I the equivalence class of x. The
addition and mupltiplication on R/I are defined as follows:

(x+D+@y+I1)=(x+y) +1,

(x+1)(y+1) = (zy) + L.

Note that representing an equivalence class as x + I is not
unique. It is possible that x + [ =2’ + I, y+ 1 =1y + I.



Let ¢ € Mat, «,,(C[[z]]) be a Higgs field. The characteristic
polynomzial of ¢ is defined as

Xo(T,y) = det(yln, — @),

where I, is the identity matrix of size n.

0 22 0
E. g. the characteristic polynomial of the matrix |0 0 2?2

xz 0
is x¢(z,y) = y> — 2°.



The spectral ring of ¢ is the factor ring

R¢ - C[[x,y]/(x¢(x,y)),

where (xg4(z,y)) is the ideal {x4(z,y) [, f € Ry}, and
Clla, y] = {y™ fn (@) + 5 o1 (@) + . + Y1) + fo(@) :

fi € Clle]l}.



Spectral modules

Definition 6

Let ¢ € Mat,«,(Cl[z]]) be a Higgs field, and

Ry = Cl[z,y]/(xs(x,y)) be its spectral ring. The spectral
module of ¢ is a module My over Ry with coordinatewise
addition and the action of Ry, on M, defines as follows:

J1 T f1 J1 J1 d11f1+ - + d1nfn
Jo T fo fo _ s Jo $21f1+ ... + donfn

]L;n 5Ufn fn fn ¢n1f1++¢nnfn

xT- s o

y Y-



Spectral correspondence: Introduction

Assuming we have a fixed characteristic polynomial y of ¢, is
there a normal form for ¢7

E.g. if x(z,y) = y™ — x, then ¢ is isomorphic to

X

How to characterise all non-isomorphic Higgs fields ¢ for a
given characteristic polynomial x?

In order to answer these questions, we will consider the
relationship between Higgs fields ¢ € Mat,x,(C[[x]]) and
special modules over R = Cl[z, y|/(x)-



Fraction ring

Definition 7
The fraction ring Frac(R) of R is the set of "fractions” g,
r€ R, g€ R\ {0}, modulo the equivalence relation

"
q

if r¢' =1'q.

Y
/ Y

|3

Every module M over R induces a module M = M ®p Frac(R)

over Frac(R). In other words, the elements of M are linear
combinations of pairs m ® g, m € M, 2 € Frac(R), modulo the

equivalence relations:

T T T
Mm@ —+ms®—~ (my +mo) @ —,
q q q

r r! r
m—-—+me—~mS| -+ — |,
q q q

/ r /fr
mnrTr QQ—~mr —.
q q



Assume that R has no zero divisors (there are no non-zero
elements that divide zero).

A module M over R is called torsion-free if r - m = 0, for some
re R, mée M, thenr =0orm=0.

A module M over R is said to have rank one, if the induced
module M over Frac(R) is isomorphic to Frac(R).



Spectral correspondence theorem

Theorem (Beauville-Narasimhan-Ramanan)

Let x € C[[z,y] be irreducible, n = deg,(x). Then there is a
one-to-one correspondence between the following two sets:

( Higgs fields
¢ € Matyxn(C[[z]])
with the characteristic
polynomial x up to
conjugation via
elements of

\ GLy (C[[2]])

torsion-free
rank one modules ) 1-1

over R = C|[z,y]/(x)

up to isomorphism

~
o\




Example

Consider the characteristic polynomial xy = y? — z* (k is odd).
Our goal is to describe all torsion-free rank 1 modules over

R =C|[z,y]/(x)-

We will need to use the following lemma:;:

Lemma

For every torsion-free rank one module M over R there is a
injective module homomorphism of M into R (where
R = C[[t]]) so that:

RCMCR

In our example, we can use x — t2 and y — t*.



Example

1. M = R =Cl[z,y]/x.
Let (1,y) be the basis over C[[z]]. Then, all elements of M can
be presented as f -1+ g -y, where f, g € C[[x]]. In other words,

M= & as Cl[[x]]-module
Cl[]]

Then, as multiplication by ¢ is the same as multiplication by v,

(=6 = )=

k
Hence, in this case ¢ = (? 560 )



Example

2. M =R.
Let x-m =1t?>-m, and y-m = t* - m for all m € M. Then, (1,t)
is the basis of M over C[[t]], and

y-1=tF=0-1+t"1.¢ y-t=tFt=¢ 1 40.¢

Note that y is irreducible, so £k must be odd. Therefore, we get

)= () =) 0= (5)-00)

k41
Hence, here we get ¢ = ( L o 02 )



Example

Now, recall that R C M C R, and think of M/R as a
submodule of R/R =< t,t3,t>, ..., tF=2 >,

Let ¢ be the smallest integer such that t**~! ¢ M.
Then, t2~1 = ¢#~1. 277 (j > 4), must also be in M.

Thus, we have shown that M/R =< ¢~ ¢+l th=2 >
(Notice that M = R is a subcase of the ring above.)

Finally, consider the general case.



Example

3. M/R =< 2i-1 42i+1 k=2 -
In this case, (1,t*71) is the basis of M over C[[z]], and we have:

Therefore,
1 0 0 0 gh+2i-1 7
¢O:tk+1—2z’=x#,¢1= 0 = 0
O k+2i—1
2
So, the Higgs field ¢ = ( b1 —2i o 0 ) fore=1,2,..., %
xr 2
0 k—1421
2
In conclusion, we have proved that ¢ = ( bt 1—23 . 0 )
xr 2

for i =1,2,..., &L,



> X(z,y) =y’ —x

> x(z,y) =y’ —=x

> x(z,y) =y’ —=x



THANK
YOU!
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