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Higgs fields

Definition 1
A Higgs field is a square matrix that has power series as its
elements.

We can define a Higgs field as an element of ϕ ∈ Matn×n([[x]]).

(Here C[[x]] =
{

a0 + a1x + a2x2 + ... : ai ∈ C, i ≥ 0
}

is a ring,
called the ring of the power series in one variable with complex
coefficients.)



Ideals

Definition 2
Let R be a ring. An ideal of R is a subset I ⊆ R such that
▶ for all f, g ∈ I, we have f + g ∈ I,
▶ for all f ∈ I, g ∈ R, we have fg ∈ I.

Note that every ideal of R is a subring of R, but not vice versa.



Factor rings

Definition 3
Let R be a ring, and I be an ideal in R. Then we can define the
factor ring R/I whose elements are equivalence classes for the
equivalence relation:

x ∼ y ⇐⇒ x − y ∈ I.

For x ∈ R, we denote by x + I the equivalence class of x. The
addition and mupltiplication on R/I are defined as follows:

(x + I) + (y + I) = (x + y) + I,

(x + I)(y + I) = (xy) + I.

Note that representing an equivalence class as x + I is not
unique. It is possible that x + I = x′ + I, y + I = y′ + I.



Characteristic polynomial

Definition 4
Let ϕ ∈ Matn×n(C[[x]]) be a Higgs field. The characteristic
polynomial of ϕ is defined as

χϕ(x, y) = det(yIn − ϕ),

where In is the identity matrix of size n.

E. g. the characteristic polynomial of the matrix

0 x2 0
0 0 x2

x 0 0


is χϕ(x, y) = y3 − x5.



Spectral ring

Definition 5
The spectral ring of ϕ is the factor ring

Rϕ = C[[x, y]/(χϕ(x, y)),

where (χϕ(x, y)) is the ideal {χϕ(x, y)f, f ∈ Rϕ}, and
C[[x, y] =

{
ymfm(x) + ym−1fm−1(x) + ... + yf1(x) + f0(x) :

fi ∈ C[[x]]
}

.



Spectral modules

Definition 6
Let ϕ ∈ Matn×n(C[[x]]) be a Higgs field, and
Rϕ = C[[x, y]/(χϕ(x, y)) be its spectral ring. The spectral
module of ϕ is a module Mϕ over Rϕ with coordinatewise
addition and the action of Rϕ on Mϕ defines as follows:

x·


f1
f2
...

fn

 =


xf1
xf2

...
xfn

 , y·


f1
f2
...

fn

 = ϕ


f1
f2
...

fn

 =


ϕ11f1 + ... + ϕ1nfn

ϕ21f1 + ... + ϕ2nfn
...

ϕn1f1 + ... + ϕnnfn

 .



Spectral correspondence: Introduction

Assuming we have a fixed characteristic polynomial χ of ϕ, is
there a normal form for ϕ?

E.g. if χ(x, y) = yn − x, then ϕ is isomorphic to
x

1
. . .

1


How to characterise all non-isomorphic Higgs fields ϕ for a
given characteristic polynomial χ?

In order to answer these questions, we will consider the
relationship between Higgs fields ϕ ∈ Matn×n(C[[x]]) and
special modules over R = C[[x, y]/(χ).



Fraction ring

Definition 7
The fraction ring Frac(R) of R is the set of ”fractions” r

q ,
r ∈ R, q ∈ R \ {0}, modulo the equivalence relation

r

q
∼ r′

q′ , if rq′ = r′q.

Every module M over R induces a module M̃ = M ⊗R Frac(R)
over Frac(R). In other words, the elements of M̃ are linear
combinations of pairs m ⊗ r

q , m ∈ M , r
q ∈ Frac(R), modulo the

equivalence relations:

m1 ⊗ r

q
+ m2 ⊗ r

q
∼ (m1 + m2) ⊗ r

q
,

m ⊗ r

q
+ m ⊗ r′

q′ ∼ m ⊗
(

r

q
+ r′

q′

)
,

m r′ ⊗ r

q
∼ m ⊗ r′ r

q
.



Rank one torsion-free

Definition 8
Assume that R has no zero divisors (there are no non-zero
elements that divide zero).
A module M over R is called torsion-free if r · m = 0, for some
r ∈ R, m ∈ M , then r = 0 or m = 0.

Definition 9
A module M over R is said to have rank one, if the induced
module M̃ over Frac(R) is isomorphic to Frac(R).



Spectral correspondence theorem

Theorem (Beauville-Narasimhan-Ramanan)
Let χ ∈ C[[x, y] be irreducible, n = degy(χ). Then there is a
one-to-one correspondence between the following two sets:


torsion-free

rank one modules
over R = C[[x, y]/(χ)
up to isomorphism

 oo 1−1
//



Higgs fields
ϕ ∈ Matn×n(C[[x]])

with the characteristic
polynomial χ up to

conjugation via
elements of

GLn(C[[x]])





Example

Consider the characteristic polynomial χ = y2 − xk (k is odd).
Our goal is to describe all torsion-free rank 1 modules over
R = C[[x, y]/(χ).

We will need to use the following lemma:

Lemma
For every torsion-free rank one module M over R there is a
injective module homomorphism of M into R (where
R = C[[t]]) so that:

R ⊆ M ⊆ R

In our example, we can use x → t2 and y → tk.



Example

1. M = R = C[[x, y]/χ.
Let (1, y) be the basis over C[[x]]. Then, all elements of M can
be presented as f · 1 + g · y, where f, g ∈ C[[x]]. In other words,

M =
C[[x]]

⊕
C[[x]]

as C[[x]]-module

Then, as multiplication by ϕ is the same as multiplication by y,

ϕ

(
0
1

)
=
(

1
0

)
and ϕ

(
1
0

)
=
(

xk

0

)

Hence, in this case ϕ =
(

0 xk

1 0

)
.



Example

2. M = R.
Let x · m = t2 · m, and y · m = tk · m for all m ∈ M . Then, (1, t)
is the basis of M over C[[t]], and

y · 1 = tk = 0 · 1 + tk−1 · t y · t = tk+1 = tk+1 · 1 + 0 · t

Note that χ is irreducible, so k must be odd. Therefore, we get

ϕ

(
1
0

)
=
(

0
tk−1

)
=
(

0
x

k−1
2

)
ϕ

(
0
1

)
=
(

tk+1

0

)
=
(

x
k+1

2

0

)

Hence, here we get ϕ =
(

0 x
k+1

2

x
k−1

2 0

)
.



Example

Now, recall that R ⊆ M ⊆ R, and think of M/R as a
submodule of R/R =< t, t3, t5, ..., tk−2 >.

Let i be the smallest integer such that t2i−1 ∈ M .
Then, t2j−1 = t2i−1 · xj−i (j > i), must also be in M .

Thus, we have shown that M/R =< t2i−1, t2i+1, ..., tk−2 >.
(Notice that M = R is a subcase of the ring above.)

Finally, consider the general case.



Example

3. M/R =< t2i−1, t2i+1, ..., tk−2 >.
In this case, (1, t2i−1) is the basis of M over C[[x]], and we have:

y·1 = tk = 0·1+tk+1−2i·t2i−1, y·t2i−1 = tk+2i−1 = tk+2i−1·1+0·t2i−1

Therefore,

ϕ

(
1
0

)
=
(

0
tk+1−2i

)
=
(

0
x

k+1−2i
2

)
, ϕ

(
0
1

)
=
(

tk+2i−1

0

)
=
(

x
k+2i−1

2

0

)

So, the Higgs field ϕ =
(

0 x
k+2i−1

2

x
k+1−2i

2 0

)
for i = 1, 2, ..., k−1

2 .

In conclusion, we have proved that ϕ =
(

0 x
k−1+2i

2

x
k+1−2i

2 0

)
for i = 1, 2, ..., k+1

2 .



Further examples

Higgs fields ϕ ∈ Mat3×3(C[[x]])

▶ χ(x, y) = y3 − x4

▶ χ(x, y) = y3 − x5

▶ χ(x, y) = y3 − x7



Thank you

THANK
YOU!
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